ADVANCED OOP

OVERVIEW

OVERVIEW

= Brief history of object-oriented programming

Simula-67 was first language to have classes and objects
Smalltalk was developed by Alan Kay at Xerox Parc in 1972
Smalltalk-80 was first released outside Xerox in 1980
Objective-C added Smalltalk features to C in 1984

Bjarne Stroustrup developed C++ at Bell Labs in 1985
Python was first released in 1991 by Guido van Rossum
Java designed by James Gosling at Sun in 1995

OOQOP concepts now in dozens of programming languages

CSCE 2014 - Programming Foundations Il

OVERVIEW

= Primary goals of object-oriented programming:

1. Allow the user to define new data types
= Specify the data fields in the data type
= Specify the operations on this data

2. Implement “information hiding” in the compiler
= Provide an interface for manipulating data (public)
= Prevent direct access to data (private)

3. Simplify program syntax for users of classes
= Reduced parameter passing, chaining of method calls
= QOperator overloading, templates / generics

CSCE 2014 - Programming Foundations Il 3

OVERVIEW

» (Classes are used to implement abstract data types (ADTS)

= A data structure with an interface that provides operations
on this data while hiding implementation details

Public Private

Interface Methods ——— Methods

Application

Program
g Data Structure

CSCE 2014 - Programming Foundations Il 4

OVERVIEW

= ADTs often used for mathematical applications

= Choose data types specific to application
= Choose operations specific to application
= Examples: complex numbers, polynomials, matrices

= ADTs also used to implement “classic” data structures

= Linked Lists

= Stacks

= Queues

= Binary Trees
= Hash Tables
= Heaps

CSCE 2014 - Programming Foundations Il 5

OVERVIEW

= Every programming language tries to distinguish itself
from other programming languages by changing the syntax
of commands and/or adding unique features

= C++ added classes/objects to the language C but left the
rest of the language largely unchanged

= C++ introduced the idea of operator overloading that allows
the programmer to redefine the meaning of traditional
operators (+, -, *, /, etc.)

= C++ also introduced the idea of templates where the user
can specify the data type to be used in a function/class in
the main program without having to recompile the code

CSCE 2014 - Programming Foundations Il 6

ADVANCED OOP

REVIEW OF CLASSES

REVIEW OF CLASSES

*= In this section, we will see how to define, implement and
use classes in object-oriented programs

= \What is a class?

= Aclassis a user defined data type that contain variables
(called attributes) and a collection of operations on these
variables (called methods)

= The primary advantage of classes is that they give us a
natural way to create robust and reliable code that can be
reused in a wide range of applications

CSCE 2004 - Programming Foundations |

REVIEW OF CLASSES

= Aclassis normally created by one programmer and used
by many other programmers

Only the creator needs to know implementation details
Users can ignore details and build code on top of the class

This allows teams of programmers to work on separate
classes to build very large and complex applications

= (Class libraries

CSCE 2004 -

The standard C++ class library contains dozens of
general-purpose classes that can be used in any program

We have already been using the string, cin, cout, ifstream,
and ofstream classes in our programs

Programming Foundations |

REVIEW OF CLASSES

= To define a class (in class_name.h file)

= List the data fields inside the class
= List the functions/methods that operate on this data

= To implement a class (in class_name.cpp file)

= Implement constructor functions to initialize data fields
= Implement methods to perform data operations

= To use aclass (after including class_name.h file)

= Declare objects of the class
= Call methods on these objects

CSCE 2004 - Programming Foundations | 10

ADVANCED OOP

DEFINING CLASSES

DEFINING CLASSES

= The main purpose of a class is to bundle together the data
and operations that make up an abstract data type

= We must give variable declarations for all of the data fields
that make up the abstract data type

= We must give function prototypes for all of the methods
that operate on these data fields

* We must also specify how the class can be used

= We must specify which of the variables and functions are
public and can be accessed directly by users of this class

= We must also specify which of the variables and functions
are private and hidden from users of this class

CSCE 2004 - Programming Foundations | 12

DEFINING CLASSES

= Overview of the C++ "class” definition syntax

class class_name < We give the name of the class here

{

private:
data_type variable _name;
data_type variable_name;

CSCE 2004 - Programming Foundations | 13

DEFINING CLASSES

= Overview of the C++ "class” syntax

class class_name Everything after the word “private”

{ / is hidden from users of the class
private:

data_type variable _name;
data_type variable_name;

CSCE 2004 - Programming Foundations | 14

DEFINING CLASSES

= Overview of the C++ "class” syntax

class class_name These variable declarations define
{ the data fields inside the class that
private: / make up the abstract data type

data_type variable _name;
data_type variable_name;

CSCE 2004 - Programming Foundations | 15

DEFINING CLASSES

~ Everything after the word “public”
IS visible to users of the class

public: <
class _name();
~class_name();

return_type method_name(parameter_list);
return_type method_name(parameter_list);
return_type method_name(parameter_list);

CSCE 2004 - Programming Foundations | 16

DEFINING CLASSES

The constructor function has
. the same name as the class, it
public: . T .
IS used to initialize data fields
class _name();
~class_name();
return_type method_ name(parameter_list);

return_type method_name(parameter_list);
return_type method_name(parameter_list);

CSCE 2004 - Programming Foundations |

17

DEFINING CLASSES

The destructor function has the
public: same name as the class with a

tilde character in front, it is used
class_name(); to finalize data fields
~class_name()

return_type method_name(parameter_list);
return_type method_name(parameter_list);
return_type method_name(parameter_list);

CSCE 2004 - Programming Foundations |

18

DEFINING CLASSES

These function prototypes specify
the methods that implement

lic:
public operations on the data fields

class _name();
~class_name();

return_type method_name(parameter_list);

return_type method_name(parameter_list);
return_type method_name(parameter_list);

CSCE 2004 - Programming Foundations |

19

DEFINING CLASSES

public:
class _name();
~class_name();

return_type method_name(parameter_list);
return_type method_name(parameter_list);
return_type method_name(parameter_list);

I3
\ We need to put a semicolon

here after the curly bracket

CSCE 2004 - Programming Foundations |

20

DEFINING CLASSES

= Programming convention

= (C++ classes are defined in class_name.h file
= Use #ifndef compiler flag so code is included only once

= Examples in source code folder:

= student.h — stores student record information

= pook.h — stores information on books

= video.h — stores information on video clips

= [inear.h — stores linear equations of formAx+ By + C =0

CSCE 2014 - Programming Foundations Il 2 1

ADVANCED OOP

IMPLEMENTING CLASSES

IMPLEMENTING CLASSES

» Class methods are implemented just like regular functions

= We must add “class name::” before the method name

= This tells the C++ compiler that this method has access to
the private variables of the class

return_type class _name::method_name(parameter_list)

{

// Code for method goes here

}

CSCE 2004 - Programming Foundations | 23

IMPLEMENTING CLASSES

= Start by creating "skeleton methods"

Copy and paste the method headers from class definition
Remove the semicolon at the end of each method header
Add “class_name::” before the method _name

Add a debugging statement to print the method name

return_type class_name::method_name(parameter_list)

{

cout << "method_name\n";

}

CSCE 2004 - Programming Foundations |

24

IMPLEMENTING CLASSES

= After we have the "skeleton methods" compiling

Add the desired code for each method one at a time
Compile and debug each method one at a time

Start with getters and setters and the print method
Add complex methods last after the others are working
This is a classic "incremental development" technique
We always have a compiling / running program !!!

CSCE 2014 - Programming Foundations Il

25

IMPLEMENTING CLASSES

= Programming convention

= C++ classes are implemented in class_name.cpp file
= We must include class _name.h file

= Examples in source code folder:

= student.h — stores student record information

= pook.h — stores information on books

= video.h — stores information on video clips

= [inear.h — stores linear equations of formAx+ By + C =0

CSCE 2014 - Programming Foundations Il 26

ADVANCED OOP

USING CLASSES

USING CLASSES

= Using classes is a three step process

1) Include the class definition at top of program
#include <class _name> for built in classes
#include “class_name.h” for user defined classes

2) Declare objects of the class like we declare variables
class_name object_name;

3) Use object by calling methods using the dot notation
object_name.method_name();
object_name.method_name(paraml, param2);

CSCE 2004 - Programming Foundations | 28

USING CLASSES

= The compiler will look at the class definition to check that
we are using a class properly (parameters, return type)

= The compiler will allow us to call public class methods in
the class using the dot notation

object_name.method_name(paraml, param2);

= The compiler will not allow us to access the private data
fields in the class using the dot notation

object_name.variable _name =42;

\ This will cause a

compiler error

CSCE 2004 - Programming Foundations | 29

USING CLASSES

= We have been using several built-in classes for some time

= The string class

#include <string>
string name = “John’;

Int len = name.length();
name.append(“Smith”);
name.insert(4, “”);

cout << name << endl;

CSCE 2014 - Programming Foundations Il

30

USING CLASSES

= We have been using several built-in classes for some time

= The ifstream class

#include <fstream>

Ifstream din;

din.open(“input.txt”);

If (din.fail()) return;

Int number;

while (!din.eof())

{ din >> number; cout << number << “”; }
din.close();

CSCE 2014 - Programming Foundations Il 3 1

USING CLASSES

= Programming convention

= Use other classes in main.cpp file
= We must include class _name.h file

= Examples in source code folder:

= student.h — stores student record information

= pook.h — stores information on books

= video.h — stores information on video clips

= [inear.h — stores linear equations of formAx+ By + C =0

CSCE 2014 - Programming Foundations Il 32

ADVANCED OOP

OPERATOR OVERLOADING

OPERATOR OVERLOADING

» QOperator overloading in C++ allows the programmer to
give new meanings to predefined C++ operators

= This is done by creating class methods whose "name" is
given by one of the predefined operators in C++

= For example, the C++ string class has defined "+" to
perform string concatenation instead of addition

= Programmers are allowed to "overload" the meaning of
almost all C++ operators
= arithmetic operations (+, -, *, /, %)
= comparison operations (<, <=, >, >=, ==, I=)
= jnput/ output operations (>>, <<)

CSCE 2004 - Programming Foundations | 34

OPERATOR OVERLOADING

= The syntax for operator overloading is a little tricky
= When we are defining a method, we use the keyword
"operator"” followed by the operator we wish to use

= For example, we can replace the "add" method with
"operator +" and replace "subtract" with "operator -"

= |n order to build classic looking arithmetic expressions,
we need to use the following parameter passing rules

= Pass in one value parameter of class_type
= Return a value of class_type after doing operation

CSCE 2004 - Programming Foundations | 35

ADVANCED OOP

COMPLEX NUMBERS

COMPLEX NUMBERS

= |n atraditional implementation of a complex numbers
class, we can define mathematical operations as follows

Complex Add(const Complex num) const;
Complex Subtract(const Complex num) const;
Complex Multiply(const Complex num) const;
Complex Divide(const Complex num) const;

= We can use these methods to perform calculations

Complex x(1,1), y(2,0), z(0,3);
Complex sum = x.Add(y);
Complex product = y.Multiply(z);

CSCE 2004 - Programming Foundations | 37

COMPLEX NUMBERS

= To convert this to operator overloading, we replace the
method names with “operator X” as shown below

Complex operator + (const Complex num) const;
Complex operator - (const Complex num) const;
Complex operator * (const Complex num) const;
Complex operator / (const Complex num) const;

= We can use these methods to perform calculations

Complex x(1,1), y(2,0), z(0,3);
Complex sum =X +Y;
Complex product =y * z;

CSCE 2004 - Programming Foundations | 38

COMPLEX NUMBERS

class Complex

{

public:
Complex(float re = 0.0, float im = 0.0);
Complex(const Complex & num);
~Complex();

Complex Add(const Complex num) const;
Complex Subtract(const Complex num) const;
Complex Multiply(const Complex num) const;
Complex Divide(const Complex num) const;

Traditional methods for
<——— addition, subtraction,
multiplication, division

private:
float Re;
float Im;

3

CSCE 2004 - Programming Foundations | 39

COMPLEX NUMBERS

class Complex

{

public:
Complex(float re = 0.0, float im = 0.0);
Complex(const Complex & num);
~Complex();

Complex operator + (const Complex num) const;
Complex operator - (const Complex num) const;
Complex operator * (const Complex num) const;
Complex operator / (const Complex num) const;

Operator overloaded
<— addition, subtraction,
multiplication, division

private:
float Re;
float Im;

3

CSCE 2004 - Programming Foundations | 40

COMPLEX NUMBERS

class Complex

{

public:
Complex(float re = 0.0, float im = 0.0);
Complex(const Complex & num);
~Complex();

Standard constructor,
<——— copy constructor and
destructor methods

Complex operator +(const Complex num) const;
Complex operator -(const Complex num) const;
Complex operator *(const Complex num) const;
Complex operator /(const Complex num) const;

private:
float Re;
float Im;

3

CSCE 2004 - Programming Foundations | 4 1

COMPLEX NUMBERS

class Complex

{

public:
Complex(float re = 0.0, float im = 0.0);
Complex(const Complex & num);
~Complex();

Complex operator +(const Complex num) const;
Complex operator -(const Complex num) const;
Complex operator *(const Complex num) const;
Complex operator /(const Complex num) const;

private:

_ Private variables for the
float Re; . :
. <—— real and imaginary parts
float Im;
. of complex number

CSCE 2004 - Programming Foundations |

42

COMPLEX NUMBERS

Complex Complex::operator + (const Complex num) const
Complex res;
res.Re = Re + num.Re;
res.Im = Im + num.Im,;
return res;

We perform addition
using local variable "res"
and then return this value

CSCE 2004 - Programming Foundations |

43

COMPLEX NUMBERS

Complex Complex::operator - (const Complex num) const
Complex res;
res.Re = Re - num.Re;
res.Im = Im - num.Im;
return res;

We perform subtraction
using local variable "res"
and then return this value

CSCE 2004 - Programming Foundations |

44

COMPLEX NUMBERS

Complex Complex::operator * (const Complex num) const
Complex res;
res.Re = Re * num.Re - Im * num.Im;
res.Im = Re * num.Im + Im * num.Re;
return res;

We perform multiplication
using local variable "res"
and then return this value

CSCE 2004 - Programming Foundations | 45

COMPLEX NUMBERS

Complex Complex::operator / (const Complex num) const
{
/[Calculate magnitude of num
float magnitude = num.Re * num.Re + num.Im * num.Im;
if (magnitude <= 0.0)

magnitude = 1.0; The formula for complex
division is more complex
// Calculate result (see Wikipedia for details)
Complex res;

res.Re = (Re * num.Re + Im * num.Im) / magnitude;
res.Im = (Im * num.Re - Re * num.Im) / magnitude;
return res;

CSCE 2004 - Programming Foundations | 46

ADVANCED OOP

POLYNOMIALS

POLYNOMIALS

= In atraditional implementation of a Polynomial class, we
can define mathematical operations as follows

Polynomial Add(const Polynomial num) const;
Polynomial Subtract(const Polynomial num) const;
Polynomial Multiply(const Polynomial num) const;

» The implementation of each of these operations must
follow the traditional rules for polynomial arithmetic
(ax? + bx + ¢) + (dx? + ex + f) = (a+d)x? + (b+e)x + (c+f)
(ax? + bx + ¢) - (dx? + ex + f) = (a-d)x? + (b-e)x + (c-f)
(bx + c) * (ex + f) = (be)x? + (bf+ce)x + cf

CSCE 2004 - Programming Foundations | 48

POLYNOMIALS

= To use this Polynomial class, we declare Polynomial
objects and call these methods

Polynomial a(4,3,2); Il a(x) = 4+3x+2x?
Polynomial b(1,2); [l b(x) =1+ 2X
Polynomial ¢(3,4,5); Il c(X) = 3+4x+5x?
Polynomial product = a.Multiply(b);
Polynomial sum = b.Add(c);

Polynomial difference = b.Subtract(c.Add(a));

CSCE 2004 - Programming Foundations | 49

POLYNOMIALS

= \We can use operator overloading in the Polynomial
methods by replacing the method names with operators

Polynomial operator + (const Polynomial num) const;
Polynomial operator - (const Polynomial num) const;
Polynomial operator * (const Polynomial num) const;

= Now we can use these operators in our Polynomial
calculations instead of using method names

Polynomial product = a * b;
Polynomial sum = b + c;
Polynomial difference = b - (c + a)

CSCE 2004 - Programming Foundations | 50

POLYNOMIALS

class Polynomial
{
public:
Polynomial (float pO = 0.0, float p1 = 0.0, float p2 = 0.0, float p3 = 0.0);
Polynomial (const Polynomial & p);
~Polynomial () \ Standard constructor,
copy constructor and
_ _ destructor methods
Polynomial operator +(const Polynomial p) const;
Polynomial operator -(const Polynomial p) const;
Polynomial operator *(const Polynomial p) const;
Polynomial operator /(const Polynomial p) const;

private:
float coefffmax_degree];
int degree;

3

CSCE 2004 - Programming Foundations | 5 1

POLYNOMIALS

class Polynomial

{

public:
Polynomial (float pO = 0.0, float p1 = 0.0, float p2 = 0.0, float p3 = 0.0);
Polynomial (const Polynomial & p);
~Polynomial ();

Polynomial operator +(const Polynomial p) const;

Polynomial operator -(const Polynomial p) const; Opgrgtor overloagled
Polynomial operator *(const Polynomial p) const; < addition, subtraction,
Polynomial operator /(const Polynomial p) const; multiplication, division

private:
float coefffmax_degree];
int degree;

3

CSCE 2004 - Programming Foundations | 52

POLYNOMIALS

class Polynomial

{

public:
Polynomial (float pO = 0.0, float p1 = 0.0, float p2 = 0.0, float p3 = 0.0);
Polynomial (const Polynomial & p);
~Polynomial ();

Polynomial operator +(const Polynomial p) const;
Polynomial operator -(const Polynomial p) const;
Polynomial operator *(const Polynomial p) const;
Polynomial operator /(const Polynomial p) const;

private: Private variables store an

float coeff[max_degree]; «——— array of polynomial

int degree; coefficients and the degree
¥

CSCE 2004 - Programming Foundations | 53

POLYNOMIALS

Polynomial::Polynomial(float pO, float p1, float p2, float p3)
{
if (p3 = 0) degree = 3;
else if (p2 1= 0) degree = 2, <——— Store the polynomial degree
else if (p1 '= 0) degree = 1,
else degree = 0;

for (int d = 0; d < max_degree; d++)

coeff[d] = O;
coeff[3] = p3;
coeff[2] = p2; <— Store the polynomial coefficients
coeff[1] = p1;
coeff[0] = pO;

CSCE 2004 - Programming Foundations | 54

POLYNOMIALS

Polynomial Polynomial::operator + (const Polynomial p)
{
Polynomial res;
If (degree >= p.degree)
res.degree = degree; =~ €«——— Calculate degree of output polynomial
else
res.degree = p.degree;

for (int d = 0; d <=res.degree; d++)

res.coeff[d] = coeff[d] + p.coeff[d];, <«——— Add the polynomial coefficients
return res;

CSCE 2004 - Programming Foundations | 55

POLYNOMIALS

Polynomial Polynomial::operator - (const Polynomial p)
{
Polynomial res;
if (degree >= p.degree)
res.degree = degree; <—— Calculate degree of output polynomial
else
res.degree = p.degree;

for (int d = 0; d <=res.degree; d++)

res.coeff[d] = coeff[d] - p.coeff[d]; ~<«——— Subtract the polynomial coefficients
return res;

CSCE 2004 - Programming Foundations | 56

POLYNOMIALS

Polynomial Polynomial::operator * (const Polynomial p)

{

Polynomial res;
res.degree = degree + p.degree;, «——— Calculate degree of output polynomial

for (int d = 0; d <= res.degree; d++)
res.coeff[d] = 0; <— I|nitialize output polynomial coefficients

for (int da = 0; da <= degree; da++)

for (int db = 0; db <= p.degree; db++)
res.coeff[da + db] += coeff[da] * p.coeff[db];

return res; \
} Multiply the polynomial coefficients

CSCE 2004 - Programming Foundations | 57

ADVANCED OOP

TEMPLATES

TEMPLATES

= What is atemplate? (old definition)

= A shaped piece of metal, wood, card, plastic, or other
material used as a pattern for processes such as painting,
cutting out, shaping, or drilling.

CSCE 2014 - Programming Foundations I 59

TEMPLATES

= What is atemplate? (newer definition)

= A preset format for a document or file, used so that the
format does not have to be recreated each time it is used.
Example: presentation templates, resume templates, etc.

Meet our
professors
presentation

l Here is where your presentation begins
{
i

CSCE 2014 - Programming Foundations I 60

TEMPLATES

* What is atemplate? (C++ definition)

Templates are the foundation of generic programming,
which involves writing code in a way that is independent
of any data type.

We can create functions or classes with a “placeholder”
data type and later call this code with different data types
INn our program.

= Examples:

CSCE 2014 -

Create templated sorting function, and then call the
function to sort arrays of integers, floats, or strings.

Create an image processing class, and use this class to
store and process integer, float, or complex images.

Programming Foundations |l

61

TEMPLATES
We use myType as the

= Function templates: placeholder for the data type

template <class myType>
myType Max(myType pl, myType p2)
{
if (p1 > p2)
return p1;
else

return p2; _ _ _
1 Calling two versions of the functions

that expect different parameter types

Int max1 = Max<int>(42, 17);,
float max2 = Max<float>(4.2, 1.7);

CSCE 2014 - Programming Foundations Il 62

TEMPLATES

= (Class templates:

template <class myType>

class MyClass We use myType as the placeholder
{ for the data type used in class

: methods and private variables
Public:

myType methodl1();
void method2(myType param);

Private:
myType variable;

3

CSCE 2014 - Programming Foundations Il 63

TEMPLATES

= (Class templates:

template <class myType>
myType MyClass::methodl()

{

We use myType placeholder when
} implementing class methods too

template <class myType>
void MyClass::method2(myType param)

{
}

CSCE 2014 - Programming Foundations Il 64

TEMPLATES

= (Class templates:

MyClass <int> objectl;

Int result = objectl.methodl(); We specify the desired data
objectl.method2(42); types when we create objects

MyClass <float> object2;
float answer = object2.method1()
object2.method2(3.14159);

CSCE 2014 - Programming Foundations Il 65

TEMPLATES

= Compiling class templates:

= We must specify the placeholder data type in the class
definition in the class.h file and for each method
Implementation in the class.cpp file

= In most compilers, template classes must be defined and
Implemented at the same time

= This can be accomplished by #including the class.cpp file
at the bottom of the class.h file

= Compiling template classes within an IDE can be tricky and
may require renaming the class.cpp file

CSCE 2014 - Programming Foundations Il

66

ADVANCED OOP

NUMBERS CLASS

NUMBERS CLASS

= We will illustrate class templates with the Numbers class

= The private variables for this class include a fixed size
array with a placeholder data type

= Public methods calculate the maximum, minimum, and
median value in this array, and return a value of the
placeholder data type

= When using the Numbers class in a program, we can create
Numbers objects that contain an array of integers, or an
array of floats depending on the application needs

CSCE 2014 - Programming Foundations Il

638

NUMBERS CLASS

template <class DataType> _
<——__We are using DataType as the

class Numbers placeholder for the data type

{

public:
Numbers();
Numbers(string filename);
~Numbers();

DataType findMin();
DataType findMax();
DataType findMean();

The return type for these methods
Is also the placeholder DataType

CSCE 2014 - Programming Foundations I 69

NUMBERS CLASS

private:
static const int SIZE = 100:

DataType Data[SIZE]; _ _
<——__The private array is also declared

iInt Count; using the DataType placeholder

3

CSCE 2014 - Programming Foundations I 70

NUMBERS CLASS

template <class DataType>

Numbers<DataType>::Numbers()

{
// Initialize variables
Count = 0;
o _ _ <——__ We initialize the private
for (inti=0; 1< SIZE; i++) Data array with zeros
Datali] = O;
}

CSCE 2014 - Programming Foundations I 7 1

NUMBERS CLASS

template <class DataType>

Numbers<DataType>::Numbers(string filename)

{
/I Open input file
ifstream din;
din.open(filename.c_str());
If (din.fail())

return;

CSCE 2014 - Programming Foundations I

/2

NUMBERS CLASS

// Read integers into Data array
Count = 0;

double num;

din >> num;

while (!din.eof() && Count < SIZE)

{

Data[Count++] = (DataType)num; <——__We cast the input value into

din >> num; the correct type for Data array

}

din.close();

}

CSCE 2014 - Programming Foundations Il 73

NUMBERS CLASS

template <class DataType>
DataType Numbers<DataType>::findMin()
{
// Search array for min
DataType min = Data[O0];
for (int index = 0; index < Count; index++)
If (min > Data[index])
min = Data[index];

_ <——__ We search for minimum
return min,; value in private Data array

CSCE 2014 - Programming Foundations Il 74

NUMBERS CLASS

Int main()

{

cout << "processing integer.txt" << endl;

Numbers <int> num("integer.txt"); <——__Constructor function reads
num.print(); input file into Data array

cout << "min =" << num.findMin() << endl;
cout << "max =" << num.findMax() << end];

cout << "mean =" << num.findMean() << end];

CSCE 2014 - Programming Foundations Il 75

NUMBERS CLASS

cout << "processing float.txt" << endl;

Numbers <float> num2("float.txt"); «—___ constructor function reads
num2.print(); input file into Data array

cout << "min =" << num2.findMin() << end];
cout << "max =" << numz2.findMax() << endl;

cout << "mean =" << numz2.findMean() << endl;

CSCE 2014 - Programming Foundations Il 76

ADVANCED OOP

VECTOR CLASS

VECTOR CLASS

= The vector class is a widely used example of C++ templates

Internally the vector class stores data in a dynamic array
This array can grow or shrink as data is inserted or deleted
Because it uses a dynamic array, random access is very fast
Because it uses templates, vectors can store any data type

= |n this section we will

CSCE 2014 -

Describe how dynamic arrays can be implemented
Create a Vector class with a dynamic array of integers
Convert this Vector class into a templated class

Programming Foundations |l

/8

VECTOR CLASS

= Creating dynamic arrays

= We use the new command to allocate memory
= The delete command is used to free memory

= Start with an array containing 10 integers

/l Allocate array
int * data = new int[10];

/[Store data in array
for (int i=0; i<10; i++)
data[i] = 42;

CSCE 2014 - Programming Foundations Il 79

VECTOR CLASS

= Extend array to contain 5 more integers

// Allocate new array
int * copy = new int[15];

// Copy data into new array

for (int i=0; i<10; i++)
copy[i] = data[i];

for (int i=10; i<15; i++)
copy[i] = 101;

Copying data into the new
<—— array can be very time
consuming for large arrays

/[Adjust array pointers
delete [] data
data = copy;

CSCE 2014 - Programming Foundations Il 80

VECTOR CLASS

= To minimize the number of new,
copy, delete operations the C++
vector class always doubles the
size of the array when additional
space is needed

= Here we are appending values
1,2,3,4,5,6 to the vector

= The array length goes from
1,2,4,8 as data is added

= This guarantees that array is
always at least half full

CSCE 2014 - Programming Foundations Il

31

VECTOR CLASS

class Vector

{

public:
/I Constructors
Vector(); Our Vector class_ has Tqur
Veector(const int size): / constructors for initializing

the dynamic array of integers
Vector(const int size, const int & val);

Vector(const Vector & copy);

~Vector();

CSCE 2014 - Programming Foundations Il 82

VECTOR CLASS

/[Capacity methods
We have several methods to

/ adjust the size and capacity
of the vector object

int size();

void resize(const int size);
void resize(const int size, const int & val);
int capacity();

bool empty();

void reserve(const int size);

CSCE 2014 - Programming Foundations Il 83

VECTOR CLASS

/I Element access methods

int get(const int pos);

void set(const int pos, const int & val);
int front();

int back();

I/l Modifier methods

void push_back(const int & val);

void pop_back();

void insert(const int pos, const int & val);
void erase(const int pos);

void clear();

CSCE 2014 - Programming Foundations Il

Methods that allow the user
<——— t0 access data in the vector
(with limited error checking)

Methods that allow the user
<—— modify the contents of the
vector (add/remove data)

34

VECTOR CLASS

private:

int Size;

int Capacity; Private variables store the

int * Data: <——— dynamic array of integers gnd
_ the current size and capacity
It of the vector object

CSCE 2014 - Programming Foundations Il 85

VECTOR CLASS

Vector::Vector(const int size, const int & val)

{
if (size < 0)
Size = 0;
else
Size = size;
Capacity = Size;
if (Capacity == 0)
Data = NULL,;
else
Data = new int[Capacity];
for (int i=0; i<Capacity; i++)
Datali] = val,
}

CSCE 2014 - Programming Foundations Il

<— Error checking on Size

<—— Allocating space for array

<— |Initializing data in array

86

VECTOR CLASS

void Vector::reserve(const int size)

{
if (size > Capacity) <«——— Checking if new space is needed
{

Capacity = size;

int *data = new int[Capacity]; <— Allocating space for new array

for (int i=0; i<Size; i++)
datall] = Datall <—— Copying data from old array to new array

delete [] Data;

Data = data;

CSCE 2014 - Programming Foundations Il 87

VECTOR CLASS

void Vector::push_back(const int & val)
{
// Allocate space
if (Size == 0)
reserve(l);
else if (Size == Capacity) <—— Allocating space for new array

reserve(2*Capacity);

/| Save value

Data[Size] = val, : :
[Size] <— Storing value at last location of array
Size++;

CSCE 2014 - Programming Foundations Il 88

VECTOR CLASS

void Vector::erase(const int pos)

{
I/ Error checking
if ((pos < 0) || (pos > Size)) <«——— Error checking pos is within range

return;

/| Move data

for (int i=pos; i<Size; i++)

Data[i] = Data[i+1]; <—— Moving data to the left one position
Size--;

CSCE 2014 - Programming Foundations Il 89

VECTOR CLASS

int main()

{
Vector vect(4, 42);
vect.push_back(31);
vect.push_back(20);

vect.insert(1, 17)

vect.erase(3);

CSCE 2014 - Programming Foundations Il

42 42 42 42

42 42 42 42 31 - -

42 42 42 42 31 20 -

42 17 42 42 42 31 20 -

42 17 42 42 31 20 -

90

VECTOR CLASS

= Converting vector.h into a templated class

Add “template <class DataType>" before class definition

Use “DataType” instead of “int” for all parameters and return
types for dynamic data values

#include “vector.cpp” at bottom of the vector.h file

= Converting vector.h into a templated class

CSCE 2014 -

Add “template <class DataType>" before class methods
Change “Vector::"” into “Vector<DataType>:." in class methods

Use “DataType” instead of “int” for all parameters, variables
and return types for dynamic data values

Programming Foundations |l 9 1

VECTOR CLASS

template <class DataType>

class Vector

{
public:
/| Constructors Our Vector class has four
constructors for initializin
Vector(); — J

the dynamic array of any type
Vector(const int size);

Vector(const int size, const DataType & val);
Vector(const Vector & copy);

~Vector();

CSCE 2014 - Programming Foundations I 92

VECTOR CLASS

/[Capacity methods

int size();

void resize(const int size);
void resize(const int size, const DataType & val);
int capacity();

bool empty(); i
pty() Change int to DataType when

\ referring to vector data values

Do not change types for size or
position variables or parameters

void reserve(const int size);

CSCE 2014 - Programming Foundations Il 93

VECTOR CLASS

/I Element access methods
DataType get(const int pos);
void set(const int pos, const DataType & val);

DataType front();

DataType back(); \ Replace int with DataType

in parameters and return
types of methods that refer
to data in the vector

I/l Modifier methods

void push_back(const DataType & val);

void pop_back();

void insert(const int pos, const DataType & val);
void erase(const int pos);

void clear();

CSCE 2014 - Programming Foundations Il 94

VECTOR CLASS

private:
int Size;
int Capacity; We make the vector generic
DataType * Data; <——— (able to store any data type)
) by using DataType here

CSCE 2014 - Programming Foundations I 95

VECTOR CLASS

template <class DataType>

Vector<DataType>::Vector(const Vector & copy)

{
Size = copy.Size; \ :
Changing method header

Capacity = copy.Capacity;
if (Capacity == 0)
Data = NULL,;
else
Data = new DataType[Capacity]; <——— Changing array data type
for (int i=0; i<Size; i++)

Datal[i] = copy.Data[i];

CSCE 2014 - Programming Foundations I 96

VECTOR CLASS

template <class DataType>

void Vector<DataType>::reserve(const int size)

{
if (size > Capacity) \ _
Changing method header

{
Capacity = size;

DataType *data = new DataType[Capacity];

for (int i=0; i<Size; i++)
datali] = Datali]; \ Changing array data type

delete [] Data;

Data = data;

CSCE 2014 - Programming Foundations I 97

VECTOR CLASS

template <class DataType>

DataType Vector<DataType>::get(const int pos)
{

if ((pos >=0) && (pos < Size)) \
We added get/set methods to

return Data[pos]; _
our Vector class instead of

else
operator overloaded [] access

return -1;

CSCE 2014 - Programming Foundations I 98

VECTOR CLASS

template <class DataType>

void Vector<DataType>::set(const int pos, const DataType & val)

{
if ((pos >=0) && (pos < Size)) \
We added get/set methods to

return; _
our Vector class instead of

else
operator overloaded [] access

Data[pos] = val;

CSCE 2014 - Programming Foundations I 99

VECTOR CLASS

int main()

{
Vector<int> vect(4, 42);
vect.push_back(31);
vect.push_back(20);

vect.insert(1, 17)

vect.erase(3);

CSCE 2014 - Programming Foundations Il

42 42 42 42

42 42 42 42 31 - -

42 42 42 42 31 20 -

42 17 42 42 42 31 20 -

42 17 42 42 31 20 -

100

VECTOR CLASS

int main()

{
Vector<string> vect(2, “hi”);
vect.push_back(“mom”);
vect.push_back(“dad”);
vect.insert(3, “and”)
vect.erase(1);

}

CSCE 2014 - Programming Foundations Il

hi hi

hi hi mom -

hi hi mom dad

hi hi mom and dad - - -

hi mom and dad - - - -

101

VECTOR CLASS

ww vector - C++ Reference x -+ v

@ cplusplus.com/reference/vector/vector/ aa M w 9

[try Beta version]
Not logged in

Reference <vector> vector register log in

LT T class template

e sw::vector “vector
Articles template < class T, class Alloc = allocator<T> > class vector; // generic template

EarUin Vector

Reference L -] | vectors are sequence containers representing arrays that can change in size.

I# C library:

B containers: Just like arrays, vectors use contiguous storage locations for their elements, which means that their elements can also

be accessed using offsets on regular pointers to its elements, and just as efficiently as in arrays. But unlike arrays, their

:::::; = size can change dynamically, with their storage being handled automatically by the container.
<forward_list> £ | Internally, vectors use a dynamically allocated array to store their elements. This array may need to be reallocated in
<list> order to grow in size when new elements are inserted, which implies allocating a new array and moving all elements to
<map> it. This is a relatively expensive task in terms of processing time, and thus, vectors do not reallocate each time an
<queue> element is added to the container.
<set>
<stack> Instead, vector containers may allocate some extra storage to accommodate for possible growth, and thus the
<unordered_map> — c9ntai_ner may have an ac'_cual capacity gr_eater than the storage strictly needed to contain its elements (_i.e., its si_ze).
<unordered_set> | | Libraries can implement different strategies for growth to balance between memory usage and reallocations, but in any
= case, reallocations should only happen at logarithmically growing intervals of size so that the insertion of individual
<vector> elements at the end of the vector can be provided with amortized constant time complexity (see push_back).
[+ Input/Output:
[*l Multi-threading: Therefore, compared to arrays, vectors consume more memory in exchange for the ability to manage storage and grow
[+ Other: dynamically in an efficient way.

‘m Compared to the other dynamic sequence containers (deques, lists and forward_lists), vectors are very efficient

CSCE 2014 - Programming Foundations I 102

ADVANCED OOP

SUMMARY

SUMMARY

» (Classes are used to implement abstract data types (ADTS)
= A data structure with an interface that provides operations
on this data while hiding implementation details
= QOperator overloading in C++ allows the programmer to give
new meanings to predefined C++ operators
= This is done by creating class methods whose "name" is
given by one of the predefined operators in C++
» Templates are the foundation of generic programming
writing code in a way that is independent of any data type.

= Functions or classes use “placeholder” data type and later
call this code with different data types in our program.

CSCE 2014 - Programming Foundations Il 104

	Slide 1: Advanced oop
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: overview
	Slide 6: overview
	Slide 7: Advanced oop
	Slide 8: Review of classes
	Slide 9: Review of classes
	Slide 10: Review of classes
	Slide 11: Advanced oop
	Slide 12: Defining classes
	Slide 13: Defining classes
	Slide 14: Defining classes
	Slide 15: Defining classes
	Slide 16: Defining classes
	Slide 17: Defining classes
	Slide 18: Defining classes
	Slide 19: Defining classes
	Slide 20: Defining classes
	Slide 21: Defining classes
	Slide 22: Advanced oop
	Slide 23: Implementing classes
	Slide 24: Implementing classes
	Slide 25: Implementing classes
	Slide 26: Implementing classes
	Slide 27: Advanced oop
	Slide 28: Using classes
	Slide 29: Using classes
	Slide 30: Using classes
	Slide 31: Using classes
	Slide 32: using classes
	Slide 33: Advanced oop
	Slide 34: Operator overloading
	Slide 35: Operator overloading
	Slide 36: Advanced oop
	Slide 37: Complex numbers
	Slide 38: Complex numbers
	Slide 39: Complex numbers
	Slide 40: Complex numbers
	Slide 41: Complex numbers
	Slide 42: Complex numbers
	Slide 43: Complex numbers
	Slide 44: Complex numbers
	Slide 45: Complex numbers
	Slide 46: Complex numbers
	Slide 47: Advanced oop
	Slide 48: polynomials
	Slide 49: Polynomials
	Slide 50: Polynomials
	Slide 51: Polynomials
	Slide 52: Polynomials
	Slide 53: Polynomials
	Slide 54: Polynomials
	Slide 55: Polynomials
	Slide 56: Polynomials
	Slide 57: Polynomials
	Slide 58: Advanced oop
	Slide 59: templates
	Slide 60: templates
	Slide 61: templates
	Slide 62: templates
	Slide 63: templates
	Slide 64: templates
	Slide 65: templates
	Slide 66: templates
	Slide 67: Advanced oop
	Slide 68: Numbers class
	Slide 69: Numbers class
	Slide 70: Numbers class
	Slide 71: Numbers class
	Slide 72: Numbers class
	Slide 73: Numbers class
	Slide 74: Numbers class
	Slide 75: Numbers class
	Slide 76: Numbers class
	Slide 77: Advanced oop
	Slide 78: vector class
	Slide 79: Vector class
	Slide 80: Vector class
	Slide 81: Vector class
	Slide 82: Vector class
	Slide 83: Vector class
	Slide 84: Vector class
	Slide 85: Vector class
	Slide 86: Vector class
	Slide 87: Vector class
	Slide 88: Vector class
	Slide 89: Vector class
	Slide 90: Vector class
	Slide 91: Vector class
	Slide 92: Vector class
	Slide 93: Vector class
	Slide 94: Vector class
	Slide 95: Vector class
	Slide 96: Vector class
	Slide 97: Vector class
	Slide 98: Vector class
	Slide 99: Vector class
	Slide 100: Vector class
	Slide 101: Vector class
	Slide 102: Vector class
	Slide 103: Advanced oop
	Slide 104: summary

